Acta Crystallographica Section E

## Structure Reports <br> Online

ISSN 1600-5368

## Xiao-Du Fu, Dong-Dong Lin and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

## Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
$R$ factor $=0.046$
$w R$ factor $=0.096$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## Bis(benzimidazole- $\kappa N$ )bis(salicylato- $\kappa^{2} O, O^{\prime}$ )cadmium(II) monohydrate

In the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cd}^{\mathrm{II}}$ ion is surrounded by two salicylate anions and two benzimidazole molecules in a strongly distorted octahedral cis- $\mathrm{CdN}_{2} \mathrm{O}_{4}$ geometry. The partially overlapped arrangement and the face-to-face distances of 3.22 (3) and 3.34 (2) $\AA$ suggest $\pi-\pi$ stacking between the benzimidazole ligands of neighbouring molecules.

## Comment

The $\pi-\pi$ stacking effect is an important intermolecular noncovalent interaction and is correlated with electron transfer in some biological systems (Deisenhofer \& Michel, 1989). As part of an ongoing investigation into $\pi-\pi$ stacking in metal complexes (Pan \& Xu, 2004; Liu et al., 2004), we have prepared the title $\mathrm{Cd}^{\mathrm{II}}$ complex, (I), and present its structure here.

(I)

The molecular structure of (I) is illustrated in Fig. 1. The $\mathrm{Cd}^{\mathrm{II}}$ atom is coordinated by two chelating salicylate anions and two monodentate benzimidazole (bzim) molecules, with a strongly distorted octahedral coordination geometry (Table 1). A search of the Cambridge Structural Database (Version 5.26, update of May 2005; Allen, 2002) indicates that four $\mathrm{Cd}^{\mathrm{II}}$ complexes chelated by two salicylate anions have been crystallographically authenticated to date and all display sevencoordination geometry (Charles \& Griffith, 1983; Huo et al., 2004; Venkatasubramanian et al., 1972; Mazurier et al., 2000), unlike the situation in (I), where no other coordinating atoms (i.e. those with lone pairs) occur within $4 \AA$ of Cd .

The crystal structure of the corresponding six-coordinated $\mathrm{Cu}^{\text {II }}$ complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\right]_{n}$, has been reported previously (Li et al., 2005). The hydroxyl group of the


Figure 1
The molecular structure of (I), with $30 \%$ probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate the hydrogen bonding.


Figure 2
A diagram showing the $\pi-\pi$ stacking between parallel N13-bzim ligands in (I) [symmetry code: (iv) $-x, 1-y, 2-z$ ].
salicylate moiety bridges neighbouring Cu atoms to form onedimensional polymeric chains, while one carboxyl group of the salycilate coordinates monodentately to the Cu atom. The completely different structure for the $\mathrm{Cu}^{\mathrm{II}}$ complex is evidently correlated with the Jahn-Teller distortion for $\mathrm{Cu}^{2+}$, which results in the longer $\mathrm{Cu}-\mathrm{O}_{\mathrm{H}}$ (hydroxyl) bonds in the axial direction.

In (I), a partially overlapped arrangement is observed between parallel N13-bzim and $\mathrm{N} 13{ }^{\text {iv }}$-bzim ligands [symmetry code: (iv) $-x, 1-y, 2-z$ ] (Fig. 2) and between parallel N21bzim and $\mathrm{N} 21^{\mathrm{iii}}$-bzim ligands [symmetry code: (iii) $-x, 1-y$, $1-z$ ] (Fig. 3). The face-to-face distances of 3.22 (3) $\AA$ between N13-bzim and N13 ${ }^{\text {iv }}$-bzim ligands and 3.34 (2) $\AA$ between N 23 -bzim and $\mathrm{N} 23^{\text {iii }}$-bzim ligands strongly suggest the existence of $\pi-\pi$ stacking.


Figure 3
A diagram showing the $\pi-\pi$ stacking between parallel N21-bzim ligands in (I) [symmetry code: (iii) $-x, 1-y, 1-z$ ].

The hydroxyl groups of the salicylate ligand participate in intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to carboxyl groups, while the bzim ligands link to neighbouring complexes via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Fig. 4). Bifurcated hydrogen bonding involving atom H 21 occurs in the crystal of (I) (Table 2).

## Experimental

$\mathrm{CdCl}_{2}(1 \mathrm{mmol})$, salicylic acid $(2 \mathrm{mmol})$, bzim $(2 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(1 \mathrm{mmol})$ were dissolved in a water $(15 \mathrm{ml}) /$ ethanol $(5 \mathrm{ml})$ solution. The mixture was refluxed for 4 h and filtered after cooling to room temperature. Colourless single crystals of (I) were obtained from the filtrate after 1 d .

## Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=640.91$
Triclinic, $P \overline{1}$
$a=9.336(3) \AA$
$b=11.370$ (3) $\AA$
$c=13.967$ (4) A
$\alpha=81.154(4)^{\circ}$
$\beta=89.470(4)^{\circ}$
$\gamma=69.204(4)^{\circ}$
$V=1367.8$ (7) $\AA^{3}$
$Z=2$
$D_{x}=1.556 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Rigaku R-AXIS RAPID
$\quad$ diffractometer
$\omega$ scans
Absorption correction: multi-scan
$\quad($ ABSCOR; Higashi, 1995)
$T_{\min }=0.678, T_{\max }=0.778$
7395 measured reflections
$D_{m}=1.558 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}$ measured by flotation in dibromoethane/cyclohexane
Mo $K \alpha$ radiation
Cell parameters from 6836 reflections
$\theta=2.5-24.6^{\circ}$
$\mu=0.85 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colourless
$0.45 \times 0.38 \times 0.29 \mathrm{~mm}$

> 4894 independent reflections
> 3657 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.037$
> $\theta_{\max }=25.2^{\circ}$
> $h=-11 \rightarrow 11$
> $k=-12 \rightarrow 13$
> $l=-11 \rightarrow 16$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.096$
$S=1.01$
4894 reflections
362 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0302 P)^{2}\right]$

$$
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.55 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.59 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.0028 (6)

Table 1
Selected geometric parameters ( $\left(\AA,{ }^{\circ}\right)$.

| $\mathrm{Cd}-\mathrm{O} 1$ | $2.389(3)$ | $\mathrm{Cd}-\mathrm{O} 5$ | $2.388(3)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Cd}-\mathrm{O} 2$ | $2.362(3)$ | $\mathrm{Cd}-\mathrm{N} 13$ | $2.235(3)$ |
| $\mathrm{Cd}-\mathrm{O} 4$ | $2.372(3)$ | $\mathrm{Cd}-\mathrm{N} 23$ | $2.236(3)$ |
|  |  |  |  |
| $\mathrm{N} 13-\mathrm{Cd}-\mathrm{N} 23$ | $101.12(13)$ | $\mathrm{O} 2-\mathrm{Cd}-\mathrm{O} 5$ | $108.91(12)$ |
| $\mathrm{N} 13-\mathrm{Cd}-\mathrm{O} 2$ | $90.96(12)$ | $\mathrm{O} 4-\mathrm{Cd}-\mathrm{O} 5$ | $54.85(10)$ |
| $\mathrm{N} 23-\mathrm{Cd}-\mathrm{O} 2$ | $146.99(12)$ | $\mathrm{N} 13-\mathrm{Cd}-\mathrm{O} 1$ | $116.40(12)$ |
| $\mathrm{N} 13-\mathrm{Cd}-\mathrm{O} 4$ | $146.59(12)$ | $\mathrm{N} 23-\mathrm{Cd}-\mathrm{O} 1$ | $92.05(12)$ |
| $\mathrm{N} 23-\mathrm{Cd}-\mathrm{O} 4$ | $92.15(12)$ | $\mathrm{O} 2-\mathrm{Cd}-\mathrm{O} 1$ | $55.30(11)$ |
| $\mathrm{O} 2-\mathrm{Cd}-\mathrm{O} 4$ | $94.32(11)$ | $\mathrm{O} 4-\mathrm{Cd}-\mathrm{O} 1$ | $93.32(10)$ |
| $\mathrm{N} 13-\mathrm{Cd}-\mathrm{O} 5$ | $92.29(12)$ | $\mathrm{O} 5-\mathrm{Cd}-\mathrm{O} 1$ | $145.47(11)$ |
| $\mathrm{N} 23-\mathrm{Cd}-\mathrm{O} 5$ | $101.25(11)$ |  |  |

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 $W-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$ | 0.92 | 1.89 | $2.782(5)$ | 164 |
| O1 $W-\mathrm{H} 1 B \cdots \mathrm{O} 3$ | 0.96 | 1.98 | $2.887(6)$ | 157 |
| O3-H3A $\cdots$ O2 | 0.86 | 1.83 | $2.543(6)$ | 139 |
| O6-H6A $\cdots$ O4 | 0.93 | 1.72 | $2.546(5)$ | 147 |
| N11-H11 $\cdots$ O1 $W^{\text {ii }}$ | 0.86 | 1.91 | $2.764(6)$ | 175 |
| N21-H21 $\mathrm{O}^{\text {ii }}$ | 0.86 | 2.43 | $3.003(5)$ | 124 |
| N21-H21 $\mathrm{O}^{\mathrm{iii}}$ | 0.86 | 2.42 | $2.994(5)$ | 125 |

Symmetry codes: (i) $1-x, 1-y, 2-z$; (ii) $x-1, y, z$; (iii) $-x, 1-y, 1-z$.
H atoms on aromatic rings were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$. Water and hydroxyl H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to their parent O atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).


Figure 4
A unit-cell packing diagram for (I), showing the intermolecular hydrogen bonding (dashed lines). H atoms have been omitted.

This work was supported by the Natural Science Foundation of China (grant No. 20443003).

## References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Charles, N. G. \& Griffith, E. A. H. (1983). Inorg. Chem. 22, 2717-2723.
Deisenhofer, J. \& Michel, H. (1989). EMBO J. 8, 2149-2170.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Huo, L.-H., Gao, S., Gu, C.-S., Lu, Z.-Z., Zhao, H. \& Zhao, J.-G. (2004). Acta Cryst. E60, m596-m598.
Li, H., Yin, K.-L. \& Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
Liu, B.-X., Tian, Y.-G. \& Xu, D.-J. (2004). Acta Cryst. E60, m1453-m1455.
Mazurier, A., Billy, I., Lemoine, P., Viossat, B. \& Tomas, A. (2000). Z. Kristallogr. New Cryst. Struct. 215, 113-114.
Pan, T.-T. \& Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.
Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Venkatasubramanian, K., Villa, A. C., Manfredotti, A. G. \& Guastini, G. (1972). Cryst. Struct. Commun. 1, 427-428.

